Unsupervised Learning (1) 썸네일형 리스트형 [알고리즘] 주성분 분석(PCA) PCA(Principal Component Analysis), 주성분 분석이란 차원 축소 방법의 하나로써 많은 Feature(특성)로 구성된 다차원 데이터-셋의 차원을 축소하여 불필요한 Feature를 제거하여 새로운 데이터-셋을 생성하는 방법이다. 객체의 모든 특성이 학습을 위해 모두 필요하지도 않고, feature 가 증가할 수록 오히려 예측 신뢰도가 저하되거나 Overfitting이 발생할 가능성이 높기 때문에 이를 방지하고 시각화, 노이즈 제거, 모델 성능을 향상 하기 위해 PCA를 사용할 수 있다. PCA 원리 2차원의 데이터-셋을 1차원으로 줄이는 방법은 x, y 좌표로 구성된 2차원 데이터를 1차원의 선으로 사영(Projection)하는 것이다. 좌표 공간에는 서로 다른 방향의 수많은 선이 .. 이전 1 다음